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E)w clouds cool the climate by reflecting sunlight, shading the ocean surface, and emitting\
thermal radiation at a warm temperature. Marine low cloud amount is correlated to lower
tropospheric stability (8,4,,0,-6..) ON seasonal and interannual time scales (Klein and
Hartmann 1993). Low cloud parameterizations in many models are activated by lower
tropospheric stability criteria. Estimated inversion strength (EIS, Wood and Bretherton
2006) measures inversion strength using standard analysis levels. A stronger inversion is
presumed to limit entrainment of dry air into the boundary layer, aiding cloud formation
and limiting cloud evaporation. As surface climate warming would reduce inversion
strength and thus cloud amount, the control of the inversion strength on marine low cloud
represents a positive climate feedback. We investigate the low cloud-EIS relation on sub-

daily to interannual time scales with 26-years of ISCCP D1 adjusted low cloud fraction
(Rossow and Schiffer 1999, Clement et al. 2009) and EIS from NCEP reanalysis. We find:

1. Synoptic variability is responsible for most EIS-low cloud covariance throughout the
subtropics and midlatitudes. Negative synoptic covariance (unstable-cloudy) is found at
45-60° latitude. Synoptic storm structure explains the midlatitude covariance.

2. The seasonal EIS-low cloud (stable-cloudy) correlation (Klein and Hartmann 1993)
dominates only in the southeastern tropical Atlantic and Pacific Oceans. Beware of using
Klein-line low cloud parameterizations on timescales other than seasonal.

3. Diurnal and interannual low cloud-EIS covariance are 10x smaller than seasonal or
synoptic variability.

4. Synoptic covariance of low cloud with downward vertical velocity is found in
midlatitude storm tracks, especially over the western north Pacific and Atlantic Oceans.

The seasonal inversion strength variations explain a small fraction of low cloud variance
around the globe. The processes responsible for marine low cloud correlations should be
\g)nsidered carefully when extrapolating these correlations to climate feedbacks.
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Covariance of ISCCP adjusted low cloud with EIS. Positive values (red) in the subtropics and
eastern tropical Atlantic and Pacific Oceans indicate cloud amounts are greater for more
stable conditions. Negative values (blue) poleward of 45° latitude show cloud amount
increases for unstable conditions.

* Synoptic (1-30 day) covariance is responsible for most of the total covariance (positive
and negative) poleward of +15° latitude, including in the stratus regions.

* |nthe deep tropics, seasonal covariance of cloud and EIS is responsible for much of the
total covariance, especially over the eastern tropical Pacific and Atlantic Oceans.

Amplitudes are normalized to represent cloud fraction anomalies associated with a
standard deviation of EIS.
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What is responsible for the synoptic midlatitude low-cloud EIS covariance?
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Low clouds increase ~0.15 for a standard downward anomaly of 700 hPa pressure
velocity (w,,) in midlatitudes, especially the western Pacific and Atlantic storm tracks,

Low cloud response to vertical velocity is weak outside the midlatitudes, with clouds
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